
Problem Strategy
4 easy steps to solving any problem!

Game Plan

• Sportsmen use it, so why not us?

▫ In good times and bad, know what to do

▫ Focus under pressure

▫ Use time efficiently

Game Plan

• Besides solving the problems,

▫ Note tricky details

▫ Which problems when?

• Time management

▫ Order problems based on required time/difficulty

▫ Maximise your score

▫ Know when to abandon

 short time => debug

 +/- 45 mins => solve a new problem?

Problem Solving

• Analysis

▫ Usually the tough part

• Design

▫ Describe your solution

• Implementation

▫ Coding

• Testing

▫ Covered Later

Analysis
• Get to grips with the problem

▫ Understand the given sample
▫ Try small cases
▫ Ask questions within allotted time
▫ Problem solving frameworks

• Brainstorm solutions
• Focus on constraints & limits

▫ Memory/Time Complexity

• Try to break your solution
▫ Degenerate, huge, tiny cases
▫ Each part individually, and collectively

Brainstorming solutions

• Consider brute force first

▫ Exhaustive/complete search

▫ Try every combination

• Easy to think of, code & debug

• Usually too slow

▫ Probably won’t meet time/space limits

▫ Still useful:

 Can give you ideas

 Use for future testing

Focus on Limits

• You can solve the problem using brute force

▫ Now need a more efficient solution

• 10 or 100 mil operations per second

▫ N < 1000 O(𝑁2) is ok

▫ 210~1000

• Goal is not to solve the problem, but to solve it
within the constraints

▫ Optimisation/New solution

• The limits may be informative

Brainstorming solutions

• Heuristics & Approximations

▫ Sometimes Greedy can be proven correct

• Extend strategy from small cases

• Relate to a similar problem already seen

• There are only about 16 basic types of

informatics olympiad problems (see USACO)

Problem Solving Paradigms

• Generating vs Filtering

▫ Filters are easier but runs slower

• Forward vs Backward

▫ Sometimes easier to suppose a solution and work
backward (reverse engineer)

▫ Sometimes look at things from a different
direction, e.g. process data in reverse order

Techniques

• Precomputation

▫ Compute everything once at the start – enables
faster lookups later

▫ Can reduce time complexity

• Exploit symmetry

▫ Solve a fraction of the problem

• Rephrase/Simplify

▫ To a problem you already know

▫ To a problem that’s easier to think about

 Often Graphs

Techniques

• Decomposition
▫ Break the problem into smaller parts

 Not only smaller sub-problems (recursion, DP)
 But also different parts of a single problem

▫ Problems can contain components of each of the
16 types

• Proof Techniques
▫ By contradiction
▫ Induction
▫ Etc.

Design

• Spending some time planning your solution can

speed up the implementation

• Also identify logic errors

• Always choose easiest solution

Implementation

• Waste memory/time if it makes things easier

• Make code easy to debug

▫ Whitespace

▫ Comments

▫ Meaningful variable names

▫ Avoid pointers, dynamic memory, floating point

How to Get Better

• Learn & Practice more

▫ Applying knowledge easier than inventing

▫ Exposure to useful ideas

▫ Recognising when you can apply techniques

Subset Sums

• Question from yesterday:

• How many ways can {1,2,…,N} be split into 2

partitions with equal sums?

• N<50

• E.g. N=3: Answer = 1 ({1,2} and {3})

Subset Sums: Analysis

• Get to grips

▫ Understand the sample input/output

▫ Do some small cases

▫ Note anything important

• Focus on constraints

▫ N < 50

 O(𝑁3), maybe O(𝑁4) etc.

 DP? (also unnecessary info – the path)

Subset Sums

• Brainstorm solutions
▫ Brute Force

 Generate/Filter every possible partitioning, sum
each partition

 Each element in first or second set

 O(2𝑁 × 𝑁)

▫ DP/Recursion?
 Identify the state & recurrence relation

 Reverse engineering is useful here: suppose a solution,
and see what that implies for the smaller case (NN-1)

 Etc.

Subset Sums

• A DP solution exists

▫ Is it good enough? Do the math

▫ O(𝑁3) with N<50 is fine

• Check degenerate/small/large cases, the sample

input/output, etc.

• Design, Implement, Test

