Problem Strategy

4 easy steps to solving any problem!

Game Plan

- Sportsmen use it, so why not us?
- In good times and bad, know what to do
- Focus under pressure
- Use time efficiently

Game Plan

- Besides solving the problems,
- Note tricky details
- Which problems when?
- Time management
- Order problems based on required time/difficulty
- Maximise your score
- Know when to abandon
- short time => debug
- $+/-45$ mins $=>$ solve a new problem?

Problem Solving

- Analysis
- Usually the tough part
- Design
- Describe your solution
- Implementation
- Coding
- Testing
- Covered Later

Analysis

- Get to grips with the problem
- Understand the given sample
- Try small cases
- Ask questions within allotted time
- Problem solving frameworks
- Brainstorm solutions
- Focus on constraints \& limits
- Memory/Time Complexity
- Try to break your solution
- Degenerate, huge, tiny cases
- Each part individually, and collectively

Brainstorming solutions

- Consider brute force first
- Exhaustive/complete search
- Try every combination
- Easy to think of, code \& debug
- Usually too slow
- Probably won't meet time/space limits
- Still useful:
- Can give you ideas
- Use for future testing

Focus on Limits

- You can solve the problem using brute force
- Now need a more efficient solution
- 10 or 100 mil operations per second
- $\mathrm{N}<1000 \rightarrow \mathrm{O}\left(N^{2}\right)$ is ok
- $2^{10} \sim 1000$
- Goal is not to solve the problem, but to solve it within the constraints
- Optimisation/New solution
- The limits may be informative

Brainstorming solutions

- Heuristics \& Approximations
- Sometimes Greedy can be proven correct
- Extend strategy from small cases
- Relate to a similar problem already seen
- There are only about 16 basic types of informatics olympiad problems (see USACO)

Problem Solving Paradigms

- Generating vs Filtering
- Filters are easier but runs slower
- Forward vs Backward
- Sometimes easier to suppose a solution and work backward (reverse engineer)
- Sometimes look at things from a different direction, e.g. process data in reverse order

Techniques

- Precomputation
- Compute everything once at the start - enables faster lookups later
- Can reduce time complexity
- Exploit symmetry
- Solve a fraction of the problem
- Rephrase/Simplify
- To a problem you already know
- To a problem that's easier to think about
- Often Graphs

Techniques

- Decomposition
- Break the problem into smaller parts
- Not only smaller sub-problems (recursion, DP)
- But also different parts of a single problem
- Problems can contain components of each of the 16 types
- Proof Techniques
- By contradiction
- Induction
- Etc.

Design

- Spending some time planning your solution can speed up the implementation
- Also identify logic errors
- Always choose easiest solution

Implementation

- Waste memory/time if it makes things easier
- Make code easy to debug
- Whitespace
- Comments
- Meaningful variable names
- Avoid pointers, dynamic memory, floating point

How to Get Better

- Learn \& Practice more
- Applying knowledge easier than inventing
- Exposure to useful ideas
- Recognising when you can apply techniques

Subset Sums

- Question from yesterday:
- How many ways can $\{1,2, \ldots, N\}$ be split into 2 partitions with equal sums?
- $\mathrm{N}<5 \mathrm{O}$
- E.g. $\mathrm{N}=3$: Answer $=1(\{1,2\}$ and $\{3\})$

Subset Sums: Analysis

- Get to grips
- Understand the sample input/output
- Do some small cases
- Note anything important
- Focus on constraints
- $\mathrm{N}<50$
- $\mathrm{O}\left(N^{3}\right)$, maybe $\mathrm{O}\left(N^{4}\right)$ etc.
- DP? (also unnecessary info - the path)

Subset Sums

- Brainstorm solutions
- Brute Force
- Generate/Filter every possible partitioning, sum each partition
- Each element in first or second set
- $\mathrm{O}\left(2^{N} \times N\right)$
- DP/Recursion?
- Identify the state \& recurrence relation
- Reverse engineering is useful here: suppose a solution, and see what that implies for the smaller case ($\mathrm{N} \rightarrow \mathrm{N}-1$)
- Etc.

Subset Sums

- A DP solution exists
- Is it good enough? Do the math
- $\mathrm{O}\left(N^{3}\right)$ with $\mathrm{N}<50$ is fine
- Check degenerate/small/large cases, the sample input/output, etc.
- Design, Implement, Test

